Polarization properties of fluorescent BSA protected Au25 nanoclusters.

نویسندگان

  • Sangram Raut
  • Rahul Chib
  • Ryan Rich
  • Dmytro Shumilov
  • Zygmunt Gryczynski
  • Ignacy Gryczynski
چکیده

BSA protected gold nanoclusters (Au25) are attracting a great deal of attention due to their unique spectroscopic properties and possible use in biophysical applications. Although there are reports on synthetic strategies, spectroscopy and applications, little is known about their polarization behavior. In this study, we synthesized the BSA protected Au25 nanoclusters and studied their steady state and time resolved fluorescence properties including polarization behavior in different solvents: glycerol, propylene glycol and water. We demonstrated that the nanocluster absorption spectrum can be separated from the extinction spectrum by subtraction of Rayleigh scattering. The nanocluster absorption spectrum is well approximated by three Gaussian components. By a comparison of the emissions from BSA Au25 clusters and rhodamine B in water, we estimated the quantum yield of nanoclusters to be higher than 0.06. The fluorescence lifetime of BSA Au25 clusters is long and heterogeneous with an average value of 1.84 μs. In glycerol at -20 °C the anisotropy is high, reaching a value of 0.35. However, the excitation anisotropy strongly depends on the excitation wavelengths indicating a significant overlap of the different transition moments. The anisotropy decay in water reveals a correlation time below 0.2 μs. In propylene glycol the measured correlation time is longer and the initial anisotropy depends on the excitation wavelength. BSA Au25 clusters, due to long lifetime and high polarization, can potentially be used in studying large macromolecules such as protein complexes with large molecular weight.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced photocatalytic water splitting by BaLa4Ti4O15 loaded with ∼1 nm gold nanoclusters using glutathione-protected Au25 clusters.

Glutathione-protected Au25 clusters were used to load monodisperse gold nanoclusters (1.2 ± 0.3 nm) onto BaLa4Ti4O15 to create photocatalysts. The photocatalytic activity of the resulting material for water splitting was determined to be 2.6 times higher than that of catalysts loaded with larger gold nanoparticles (10-30 nm) via conventional photodeposition.

متن کامل

Dynamic study on the transformation process of gold nanoclusters.

In this paper, the transformation process from Au8 to Au25 nanoclusters (NCs) is investigated with steady state fluorescence spectroscopy and time-resolved fluorescence spectroscopy at various reaction temperatures and solvent diffusivities. Results demonstrate that Au8 NCs, protected by bovine serum albumin, transform into Au25 NCs under controlled pH values through an endothermic reaction wit...

متن کامل

In vivo renal clearance, biodistribution, toxicity of gold nanoclusters.

Gold nanoparticles have shown great prospective in cancer diagnosis and therapy, but they can not be metabolized and prefer to accumulate in liver and spleen due to their large size. The gold nanoclusters with small size can penetrate kidney tissue and have promise to decrease in vivo toxicity by renal clearance. In this work, we explore the in vivo renal clearance, biodistribution, and toxicit...

متن کامل

Synthesis of fluorescent phenylethanethiolated gold nanoclusters via pseudo-AGR method.

It is well known that the fluorescence of metal nanoclusters is strongly dependent of the protecting ligand and reports of phenylethanethiolated metal nanoclusters with distinct fluorescence are rare. Herein, a fluorescent phenylethanethiolated gold nanocluster is synthesized using an unexpected pseudo-AGR method (AGR: anti-galvanic reduction). The cluster is precisely determined to be Au24(SC2...

متن کامل

Resonance energy transfer between fluorescent BSA protected Au nanoclusters and organic fluorophores.

Bovine serum albumin (BSA) protected nanoclusters (Au and Ag) represent a group of nanomaterials that holds great promise in biophysical applications due to their unique fluorescence properties and lack of toxicity. These metal nanoclusters have utility in a variety of disciplines including catalysis, biosensing, photonics, imaging and molecular electronics. However, they suffer from several di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 5 8  شماره 

صفحات  -

تاریخ انتشار 2013